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Semiclassical approximation of the radial equation with 
two-dimensional potentials 
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H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL, UK 

Received 24 April 1973 

Abstract. The radial equation for scattering from a cylindrically symmetrical potential is 
examined, because two-dimensional scattering arises in high-energy electron diffraction 
from crystals. Particular attention is paid to the case of s waves, where there is a centripetal 
attractive potential for free particles. After showing that the Langer transformation, which 
leads to correct semiclassical wavefunctions for all other cases in two and three dimensions, 
fails for s waves, we apply the method of comparison equations, which enables us to express 
the phase shifts and bound state conditions in a simple form valid for all angular momenta. 
We test the theory for s waves by comparison with exactly-calculated energy levels. 

1. Introduction 

The properties of wavefunctions, energy levels, etc, in a cylindrically symmetric field 
of force do not seem to have been studied very much, probably because of the lack of 
experimental motivation. However, recent investigations (Berry 1971, Berry and 
Ozorio de Almeida 1972) of the theory underlying high-energy electron microscopy 
of metal foils have drawn attention to two-dimensional systems. Briefly, the reason 
for this is that a fast electron (kinetic energy - 1 MeV) does not respond to all the 
details of the force field inside the metal, but only tq. the average potential along its 
direction of motion ; this is true in both classical and quantum mechanics (Lindhard 
1965, Berry 1971). For certain crystal orientations (the so-called ‘cross-grating’ case) 
the strings of atoms constituting the metal average to cylinders, along the axes of which 
the potential has a logarithmic singularity arising from the Coulomb field of the atomic 
nuclei. The observed diffraction from the foil depends on the ‘two-dimensional band 
structure’ of this array of cylinders, so that it is necessary to study the phaseshifts, bound 
states, etc, of an individual cylinder. This work has led to problems in the interpretation 
and approximation of radial wavefunctions which we present here as they may be of 
wider interest. 

The wave equation for a particle of mass M and energy E moving in two dimensions 
in a cylindrically symmetrical potential V(R)  is 

where R, 0 are the usual plane polar coordinates and e* is the ‘semiclassical parameter’ 
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h2/2m. Separation of variables leads to 

where the reduced radial wavefunction I(I1(R) satisfies 

d 2 ' r ( R ) + L [ E -  V(R)-r2(12-$ /R2]$I(R)  = 0, 
dR2 r2 

(3) 

l being the angular momentum quantum number. We assume that the potential V ( R )  
is regular, so that any singularity at the origin satisfies 

R2 V(R)  0. (4) 

The radial equation (3) differs from its three-dimensional analogue only in the 
appearance of 1' -+ instead of the more familiar l ( l +  1). The case of s waves ( I  = 0) is 
unique: It is the only instance where a radial equation acquires a centripetal potential 
well instead of the usual centrifugal barrier, and this will obviously need special treatment. 
For the higher partial waves, on the other hand, we expect that it should be easy to adapt 
familiar three-dimensional methods for calculating bound-state energies and scattering 
phaseshifts. 

In Q 2 we examine the behaviour of (3) for free particles, concentrating on the case of 
s waves. In Q 3 we attempt to find semiclassical approximations (Berry and Mount 1972) 
for I)~(R) by using the modified WKB technique developed by Langer (1937) to deal with 
the singularity of the centrifugal potential at the origin. We find that the method fails 
for s waves and in Q 4 we deal with this delicate case by using the 'method of comparison 
equations' (Miller and Good 1953, Dingle 1956). Finally, in Q 5, we give general approxi- 
mate formulae for the energy levels and phaseshifts of equation (3), and compare the 
first few s wave bound states in a logarithmic potential with the exactly-calculated values. 

2. The free particle 

We study this case not only because the radial equation (3) can be solved exactly when 
V ( R )  is zero, but also because even in the presence of a potential the situation near the 
origin is dominated by the free-particle term ( I 2  -$)/R2, due to our assumption of 
regularity (equation (4)). The general free-particle solution of (3) can be expressed in 
terms of standard Bessel functions (Abramowitz and Stegun 1964), as 

where A,  B, C and D are constants. 
The square-integrability condition on x(R, 0) (equation (2)) in any finite region (which 

is necessary in order to exclude solutions corresponding to an infinite number of 
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particles in the region), requires that 

!!.&? -bounded. R R-m 
JoR dR'$;(R') -+ 0, 

R - 0  

When 1 is nonzero the first condition demands that B is zero if E > 0, and that D is 
zero if E < 0, while the second condition demands only that C is zero if E < 0. Thus 
there are, as expected, no bound states, and the free states take the simple form 

When 1 is zero, (6) no longer requires B and D to vanish (although C must still be 
zero), so that the function 

appears to correspond to a normalizable s wave bound state with arbitrary negative 
energy, possessing no nodes in the centripetal potential well - e2/4R2 ! But this solution 
(as well as the positive-energy solution with B # 0) can be excluded on physical grounds 
because (i) the solution (7) will not permit the consistent calculation of expectation values 
of operators? and (ii) the solution does not appear as a limiting case when we consider a 
set of finite potential wells of the form 

R > AR €2 

4R2 
V ( R )  = -- 

( 8 )  
c2  

4(AR)2 
R < AR = -- 

and let AR + 0. 
When the potential V ( R )  is not zero, $,(R) still takes the form ( 5 )  (with C = 0) as 

R + 00. For positive energies the values of A and B define two-dimensional phaseshifts 
qf  from the relation 

( R  FR,, 

+constant x cos R-" 

where R,  is the range of V(R) ,  and the two-dimensional scattering amplitude is 

(9) 

The 'scattering width'-analogous to the three-dimensional cross section-is simply 
IF(@ I *. 
t Consider for example the kinetic energy operator p2/2m.  Its expectation value for a state I x )  may be written 
either as (xl(p2/2mlx)) or as ( ( x l p )  .@lx) ) /2m.  For these two expressions to have the same value, we must 
have ~(R)R''2a/aR(~(R)/R''2),~ 0, and this condition is violated by (7). (Similarly arguments exclude the 
solution exp{( - E)"2r/c} in three dimensions.) 
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3. WKB approximations and the Langer transformation 

Under semiclassical conditions E is small, and the most obvious procedure is to approxi- 
mate (3) by the WKB method. This leads to 

= $YKB(R) = (Qo(R))-"2 exp (1 1) 

where 
E 2 ( P  -$) 

Qi(R) E E - V(R)-- 
R2 ' 

R ,  being any fixed point, usually a zero of Qo(R)-a 'turning point'. 
It is well known, however (Berry and Mount 1972), that this procedure fails because 

$1""" is not a valid approximation at the origin. To see this we follow Langer (1937) and 
note that $1""" satisfies 

where 

The semiclassical approximation is the first term of an asymptotic expansion in powers of 
E, and (14) will be equivalent to (3), ie $1""" will be a good approximation to $,, provided 
the following conditions are satisfied : 

(a) If Qg(R) is bounded and not zero, W,(R) must be bounded. 
(b) If Qg(R) diverges, E' W,(R)/Qg(R) must be negligible. 
(c) If Qi(R) vanishes, Wo(R) must vanish also. 

Along most of the real axis, case (a) applies, and the WKB method may be used. At a 
simple turning point, case (c) is violated and the WKB method fails. In the present case 
QE(R) diverges at the origin (equation (12)) and case (b) applies; it is easy to show that, for 
all V(R)  satisfying (4), 

which is certainly not negligible for the small values of 1 frequently considered. 

mation 
Langer overcomes this difficulty in three-dimensional cases by making the transfor- 

R ex, tjl(R) e"/*u, (x), (17) 

where the domain of the new variable x is the whole real axis. Applied to the two- 
dimensional equation (3), this gives 
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where 

q’(x) = e’”@ - V(ex)) - r ’P.  (19) 

The WKB method will apply under the same conditions as follow equation (15), with 
q’(x) replacing Q$(R), and 

replacing W,(R). At the origin of R, ie as x + - CO, we have q’(x) + -r’I’, so that for 
nonzero 1 case (U) applies, and, since w(x) + 0 for regular potentials, the condition is 
satisfied. 

The approximate solution of ( 3 )  for this case is given by the WKB approximation to 
( 1  8), namely 

where 

21’ 
Q:(R) = e-2xq2(x) = E -  V ( R ) - ,  R 

Thus the effect of the Langer transformation is to replace I’ -& by 1’ in (jyKB as given by 
(1 1 )  ; this is precisely analogous to replacing I ( I +  1 )  by ( I  + $)’ in three-dimensional cases 
(Berry and Mount 1972). 

However, the Langer method fails completely for s waves. When 1 is zero, q’(x) + 0 
as x + - CO, so that case (c) applies; w(x) does not vanish, but tends to a constant 
characteristic of V(R).  For the attractive logarithmic case of physical interest, where, 
near the origin 

(23) V(R)  = a In R, 

we have 

w(x) si. (24) 

Thus condition (c) is violated, and we must seek a different approximate method to deal 
with s waves near the origin. 

To understand what has gone wrong, we use the potential (23) as an example, and 
notice that q’(x) (equation (19)) can be written in the form 

q’(x) = - bx ezx - r’l’, (25) 

b aeZEIa. (26) 

where the origin of x has been displaced by - EJa, and 

With this form for q’(x), the Langer-transformed equation ( 1 8 )  resembles a one-dimen- 
sional Schrodinger equation with ‘energy’ - c’1’ and ‘potential’ bx e’” (figure 1). For 
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---2 

4 -- 

Figure 1. 'Potential energy' diagram corresponding to equation (18) with attractive 
logarithmic potential (b = 10). 

nonzero 1 the point x = - 00 lies in an ordinary 'classically forbidden region' dominated 
by the centrifugal repulsion, while fors waves the point x = - 00 lies just on the boundary 
between free and bound states, since the Langer transformation neatly eliminates the 
centripetal well. For 1 = 0, (18) has the exact limiting solution 

(27) 

For the corresponding IClo(R) to be an acceptable wavefunction near the origin (cf 
footnote after equation (7)), A must vanish. This, together with boundedness of ICl0(R) as 
R or x -, + CO, imposes a discrete spectrum on b and hence on E. The WKB approxima- 
tion to (18) does not behave like (27), however, but like 

uo(x) - Ax + B. 
x - - m  

e - X I 2  
dx' q(x') + LY 

(- bx)'I4 sin( 
uy=yx)  = 

ex12 e - X I 2  

- - - ( -~X) ' /~COSX+ sin LY, 
x-r -m 6 (- bx)'I4 

where a is a phase angle which must be set equal to zero for an acceptable solution. This 
incorrect form arises because the 'turning point' at x = -00 has not been treated 
properly, and we shall see in Q 5 that (28) leads to totally false numerical values for 
eigenvalues. 

4. The comparison equation method for s waves 

To deal with this delicate case we map the unknown solution uo(x) of the Langer- 
transformed equation (18) onto the known solution Uo(X) of 

where Q(X) is a simple function resembling q(x). The simplest approximate mapping 
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procedure can easily be shown (Miller and Good 1953) to yield 

where X(x) is defined by 

The approximate solution satisfies 

where 

1457 

(31) 

(33) 

(34) 

and urmPeq(x) will be a good approximation under the conditions following equation (1  5). 
The WKB method, which fails for s waves, corresponds to taking Q(X) as constant ; 

wl(x) is then equal to w(x) (equation (20)), and we have seen that case (c) applies, and the 
condition is violated. It is evident by inspection of (19) or (25) that a better approximation 
will be obtained by taking 

Q(X) = DeZX (35) 
for s waves ( p  is an arbitrary constant). The exact solution of equation (30) which behaves 
properly as X --$ - CO (cf equation (27) and following) is 

Transforming back to the original variables via equations (31), (17) and (22) gives, for the s 
wave reduced radial wavefunction : 

Is this solution valid near the origin? Only if wl(x) -, 0 as x -, - CO, since we are dealing 
with case (c), but from (34) it can be shown that 

1'2 d d JE  dR'(E- V(R'))1'2 
R-R--( dR dR R(E- V(R))1/2 

which is zero for all regular potentials, repulsive as well as attractive. 

5. Phaseshifts and bound states 

We have found that near the origin the solution (21) holds if 1 # 0, and (37) holds for s 
waves. These solutions break down, of course, when any turning points of equation (18) 
for nonzero R (x > - CO) are reached, since the condition for case (c) (following equation 
(15)) is violated. Let R, be a turning point which is a simple zero of Q:(R) (equation (22)), 
and which therefore separates a classically allowed region Q:(R) > 0 from a forbidden 
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region Q:(R) c 0 ; standard theory (Berry and Mount 1972) then leads to the ‘connection 
formula’ 

The disposition of turning points, which determines how this formula must be applied, is 
different if E 3 0 and if 1 is zero or not, and we deal with these cases in turn. 

5.1. Phaseshifts: ( E  > 0) 

When 1 is not zero there must be an odd number of simple turning points, since the origin 
is in the forbidden region dominated by centrifugal repulsion, and the region R + CO is 
classically allowed. For cases where there is just one turning point at R, we can use (39) 
directly, since the appropriate Langer solution (21) grows exponentially away from 
R = 0, ie it decays away from RI towards R,. Thus we have 

n) ( 1  # 0). 
CO  RE"^ 

__t E -  COS ( + f (Q,(R) - E’’’) dR - L-- 
R - t m  € 4  

(40) 

(Cases of three or more turning points involve resonance behaviour (Berry and Mount 
1972).) 

For the s wave case we must use (37); there are no turning points for R > 0, so that no 
connection formula is required, and we obtain the asymptotic behaviour directly from 
(37) as 

This has precisely the same form as (40) since R = 0 is a turning point of the Langer- 
transformed equation (18) on which our treatment is based. 

Comparison with (9) gives the phaseshift 

valid for all 1. If we had used the incorrect WKB expression (21) for 1 = 0, we would have 
found a value for qo which was too small by 744. 

5.2. Bound states: ( E  < 0) 

When 1 is not zero there must be an even number of simple turning points, since R + CO is 
now classically forbidden. We consider the commonest case of two turning points, at R, 
and R,(R, > R,). Then (39) must be used twice, to connect the wave (21) across R, into 
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the potential well between R ,  and R , ,  and to connect the wave which must decay 
exponentially at R + 00 across R ,  into the potential well. The two expressions for the 
wave in the potential well must be the same (Berry and Mount 1972), so that 

that is, 

which for n = 1,2,3,. . . gives the eigenvalues E for each partial wave I .  
For s waves there is only one finite turning point of (18), at R , ,  since R ,  = 0 (cf figure 

1). Taking the asymptotic form of (18) and using (39), we find precisely the condition (44), 
which therefore holds for all 1. To test the theory for s waves, we have computed the exact 
eigenvalues b, (using the well-known Milne method of numerical integration) for a 
logarithmic potential (equation (18), with q2(x )  given by (25) and 1 = 0). Then (cf equation 
(22)), 

0 1 
- 4 1 ( R l ,  R , )  = b;/' dx( -x)"' ex = Hzb,,)'" (45) 

- m  

which is compared with the value (n-3)" predicted by (44) in table 1. To show that our 
analysis is more than a pedagogic exercise we also show in the last column the values of 
(n  -& which would have occurred in the eigenvalue condition if the wavefunction (21) 
had been incorrectly used for s waves. 

Table 1. Comparison of exact phase 4 of bound states in a logarithmic potential with 
comparison equation approximation ( ( n  - ))a and Langer-type WKB approximation 
( (n  -a,., 

1 1.50 1.57 2.36 
2 4.67 4.71 5.50 
3 7.82 7 4 5  8.64 
4 10.96 10.99 11.78 

Summing up, we find that the Langer transformation is useful for two-dimensional 
radial equations, but that for s waves further analysis, employing the method of com- 
parison equations, is required to elucidate the form of wavefunctions near the origin. A 
pleasing consequence of the analysis is that the equations for phaseshifts (42) and bound 
states (44) take the same form for all 1. 
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